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FishTail: The Formal Generation, Verification and Management of 
Golden Timing Constraints 

Chip design is not getting any easier. With increased gate counts, higher clock speeds, smaller 
chip sizes and reduced power requirements, designers have a very difficult task. Today's 
virtual prototyping and chip-implementation tools are powerful and address several key deep-
sub micron issues, but there remains a fundamental conundrum. Precise constraints on chip 
timing, upon which the design ultimately succeeds or fails, remain in a state of flux 
throughout the design cycle. False paths and multi-cycle paths are typically entered only in 
response to timing problems. As timing problems seriously manifest themselves only during 
place & route, this is late in the design cycle to be tweaking your fundamental timing goals. 
All of this results in extra timing closure iterations and longer turn-around-time, the risk of 
silicon failure because of incorrect timing constraints entered by design engineers, and a 
messy handoff from chip design to implementation teams. 

 
Figure 1: The Formal Generation, Verification and Management of Timing Constraints. 

FishTail Design Automation has developed ground-breaking, patented technology to solve 
this problem, reducing risk and improving design quality. 

Products 
FishTail's design constraint generation product, Focus, starts with the RTL or netlist 
description for a design. Focus generates a template design constraint file that points out the 
nets on the design on which clocks and generated clocks should be defined and creates default 
input/output delays for the ports on a chip. This template constraint file is then massaged by 
users to generate the final clock and boundary constraints for the chip. Next, the design 
constraints and RTL/netlist are input to Focus and used to synthesize timing exceptions (false 
and multi-cycle path definitions). False paths synthesized by Focus result from asynchronous 
clock-domain crossings, the multiplexing of clocks in the clock generation circuitry and the 
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manner in which combinatorial control logic affects the flow of information on a chip. Multi-
cycle paths synthesized by Focus result from the use of control logic to cause additional clock 
cycles to be inserted when propagating information from one register to another. Users can 
automatically have the tool generate separate constraint files for the different place-and-route 
blocks on a chip from a single chip-level run. 
 
FishTail’s timing-exception verification product, Confirm, reads in the RTL and user-
specified timing exceptions for a design. Confirm formally establishes if all the paths 
constrained by a timing exception are indeed false or multi-cycle. If mistakes are found then 
Confirm is able to re-write a timing exception more precisely so that all of the paths 
constrained by the exception are indeed false or multi-cycle. Confirm also supports an 
assertion-based verification flow for timing exception verification. With this flow, Confirm is 
used to generate an assertion that states the property that would need to be satisfied for a 
timing exception to be correct. The assertions generated by Confirm are imported into 
functional simulation tools and verified by running the RTL regressions for the design. 
 
FishTail’s constraint management product, Refocus, is used to map the golden timing 
constraints for a design to gate-level netlists generated by each step of the implementation 
flow. The intent is to maintain a single repository of design constraints and to use Refocus to 
map these golden constraints to the netlist as it evolves through the chip-implementation flow. 
As part of its constraint management capabilities Refocus is able to promote block design 
constraints to the chip-level. This allows constraints used to drive block-implementation to be 
reused during full-chip static timing signoff. Refocus handles hierarchy changes, names 
changes during chip implementation and, if required, can read in register mapping 
information established by formal equivalence checking tools. 

Value Proposition 
Customers derive substantial value by deploying FishTail products in their design flow. 
FishTail products allows them to: 

1) Eliminate the risk of silicon failure that results from the application of incorrect timing 
exceptions. When engineers are under pressure to tape-out a chip they make mistakes 
and enter timing exceptions that are either incorrect, or broader in their scope than is 
legitimate. The automated verification of user timing exceptions using Confirm is a 
formal approach to timing closure that ensures that timing constraints go through 
similar levels of scrutiny that other aspects of chip design and implementation already 
do. Our experience has shown that when engineers enter timing exceptions manually 
they almost always make mistakes. These mistakes are sometimes caught late in the 
design cycle - during gate-level functional simulation - necessitating time-consuming 
ECOs. Often, incorrect timing exceptions only manifest themselves in the form of 
silicon failure of a prototype chip in the lab or of a production chip in the field. 

2) Improve the quality of results (QoR) of the final chip implementation. Timing 
relaxations focus the attention of place and route tools on the real timing challenges on 
the design, and stop their distraction with the optimization of paths that are false or 
multi-cycle. As a result, the overall timing of the chip is significantly improved, with 
modest improvements in the area and power consumption of the chip. Our experiences 
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have shown total negative slack on designs drop by 25-75% when Focus generated 
exceptions are introduced into the implementation flow. On designs that already meet 
timing with user constraints we have seen area reduction of between 3-10% from the 
introduction of Focus generated exceptions. It is important to appreciate that most of 
the QoR improvements from applying Focus generated exceptions come not merely 
from making critical timing paths false, but by directing the attention of 
implementation tools on the real timing challenges on a design – timing exceptions 
that apply to both critical and non-critical paths are useful and important from this 
standpoint. 

3) Reduce the time spent in the back-end design flow to close timing.  The identification 
of timing exceptions early in the design flow reduces the number of timing problems 
that need to be manually addressed during timing closure. This, in turn, reduces the 
time taken to close timing because there is less back-and-forth between 
implementation and design engineers in establishing whether timing problems are real 
or not. The time taken to resolve back-end timing problems is particularly significant 
when chip-design and chip-implementation teams span geographical and business 
boundaries. Driving chip-implementation with a complete set of timing exceptions can 
easily reduce turn-around-time by 4-8 weeks. 

Timing Exception Generation Flow 

Figure 2: Timing Exception Generation Flow 

The Timing Exception Generation Flow, shown in Figure 2, commences by using Focus to 
generate false and multi-cycle paths for a design. We recommend providing Focus with 
synthesizable RTL (Verilog, VHDL or a mix) for a physical synthesis block, .lib models for 
memories, and simulation models for standard cells instantiated in the RTL. If some of the 
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blocks in a design only have gate-level netlist descriptions then the netlist can be provided as 
input to Focus. In addition to the design description, Focus reads in the existing SDC 
constraints for the physical-synthesis block. These constraints specify clocks, I/O delays, case 
analysis and any existing user-specified timing exceptions. Using this information Focus 
formally discovers false and multi-cycle paths on a design. All timing exceptions generated 
by Focus refer to clocks, registers and hierarchical pins on a design. 
 
All exceptions generated by Focus are formally verified by Confirm as part of the exception-
generation run. The exceptions generated by Focus are mapped to the netlist provided as input 
to physical synthesis using Refocus. Refocus automatically handles hierarchy removal and 
name changes between RTL objects and netlists. If necessary, users can provide Refocus with 
the mapping information established between RTL and netlist using formal equivalency 
checkers.  
 
Physical synthesis proceeds using the Focus generated timing exceptions plus the existing 
user design constraints. At the end of physical synthesis there may be some timing endpoints 
that do not meet timing. A list of these timing-critical endpoints is generated from within 
static-timing tools using FishTail provided utilities. Focus is now run at the gate-level using 
the post-physical-synthesis netlist and SDC plus the list of timing-critical endpoints. The 
objective of the gate-level Focus run is to generate false paths that apply to timing-critical 
portions of a design. The false paths that Focus generates when analyzing a gate-level netlist 
refer to clocks, registers, hierarchical and standard cell pins. The ability to refer to standard-
cell pins is something Focus could not do when running at the RTL and so the gate-level false 
paths are additive to the RTL false paths. 

The timing-critical false paths generated by Focus are added on to the existing design 
constraints and the cumulative constraints are used to drive routing. Design size is not an 
issue with the exception generation flow - Focus has been run on designs containing 600K 
flops, 15M gates flat. The complexity of clocking is not an issue - Focus has been run on 
designs containing hundreds of clocks and generated clocks. Focus has been integrated with 
the leading chip-implementation tool flows. Adding Focus generated exceptions into the chip-
implementation flow rarely has any impact on physical synthesis or routing runtime. QoR 
improves but runtimes stay unchanged. 

Timing Exception Verification Flow 
The Timing Exception Verification flow, shown in Figure 3, requires use of the Confirm 
product. The SDC file to be verified is written out from a static-timing or chip-
implementation tool. The gate-level SDC file is mapped to RTL using Refocus. Refocus 
transforms gate-level object names to RTL names and reassembles flattened design hierarchy. 
The Refocus mapped SDC file along with the RTL for the design, .lib models for memories, 
simulation models for standard cells is provided as input to Confirm. Confirm formally 
verifies the false and multi-cycle paths in the SDC file. 

When Confirm flags a timing exception as incorrect it also generates a report listing the 
timing paths constrained by the exception that are single cycle and contradict the user false or 
multi-cycle setting. This report may be viewed as a schematic using FishTail's integration 
with the Novas product family. Also, an assertion is generated that specifies why the false or 
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multi-cycle path definition is incorrect. Optionally, Confirm is able to re-write a partially 
correct timing exception when some of the paths constrained by the exception are truly false 
or multi-cycle while others are not. This allows users to specify exceptions in a loose manner 
and use Confirm to re-write the exception so that it accurately constraints the timing paths on 
a design. 

 

Figure 3: Timing Exception Verification Flow. 

In addition to the formal verification of timing exceptions, Confirm also supports an 
assertion-based verification methodology. In this flow, Confirm generates assertions for each 
timing exception that describe a functional property that must be satisfied for the timing 
exception to be correct. The assertion file generated by Confirm is then verified using a 
functional simulator or using a formal property-checking tool. Assertions are generated in a 
variety of formats - PSL, SVA, OVA, OVL and Confirm has been integrated with the major 
functional simulators and property-checkers in the industry. 
 
Constraint Management Flow 
The Refocus product from FishTail addresses the constraint management needs of chip-
implementation. The problem with today's implementation flow is that there are far too many 
versions of the design constraints for a project and these constraints are generated by far too 
many tools in the implementation flow. This leads to nervousness with regard to the 
correctness of the constraints used to finally tape-out a chip and also inefficiencies because 
the constraints used to implement the blocks on a chip cannot easily be reused when signing 
off on chip timing. 
 
The chip-implementation flow promoted by FishTail, shown in Figure 4, requires maintaining 
a single version of the golden design constraints for a physical-synthesis block. Constraints 
are added and removed from this file as chip-implementation progresses either using 
automated tools like Focus or manual entry by design engineers. Each new entry to the 
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constraint file is verified using Confirm to ensure that the golden constraint file is always 
correct and that its contents have been formally proven. 
 
As chip-implementation progresses Refocus is used to map the golden repository of design 
constraints to each new netlist version generated by different steps in the implementation flow 
(logic synthesis, DFT, physical synthesis, route, etc.). Refocus automatically handles name 
and hierarchy changes and can be provided register equivalences established by formal 
equivalence checking tools to aid in the constraint mapping. The key is that each tool in the 
implementation flow only changes the design netlist - not the design constraints. When block-
implementation is complete and a full-chip netlist is assembled, the block golden constraints 
are promoted to the chip-level using Refocus. The promoted chip-level constraints are used 
during full-chip static signoff. During constraint promotion any inconsistencies between 
existing full-chip constraints and block constraints (in terms of clock and I/O delays) are 
reported. 

 
Figure 4: Constraint Management Flow. 

Types of False Paths Formally Generated and Verified 
There are four classes of false paths that Focus is able to generate and Confirm is able to 
verify: 

1) False paths resulting from asynchronous clock-domain crossings. 
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2) False paths resulting from clock modes. 

3) False paths resulting from unsensitizable timing paths. 

4) False paths resulting unreachable circuit states. 

False Paths Resulting From Asynchronous Clock Domain Crossings 

 

set_false_path –from [get_clocks clka] –to [get_clocks clkb] 

Figure 5: False paths resulting from asynchronous clock-domain crossings. 

When registers clocked by two asynchronous clocks communicate with each other, as shown 
in Figure 5, then a clock-to-clock false path between them is legitimate. By default, two 
clocks whose periods are equal or a multiple of two are regarded as synchronous to each other 
and otherwise they are treated as asynchronous to each other. So, a 3ns and 5ns clock would 
be regarded as asynchronous, while a 2ns and 4ns clock would be regarded as synchronous. 
Users can override the default grouping of clocks by adding the –domain option to the 
create_clock command. Two clocks with different domain values would be treated as 
asynchronous to each other regardless of their clock periods. So, for example, to make clka 
and clkb that both run at 5ns but are generated from different PLLs asynchronous to each 
other you do the following: 

create_clock –period 5 clka –domain clka 

create_clock –period 5 clkb –domain clkb 

False Paths Resulting From Clock Modes 

set_false_path –from [get_clocks clka] –to [get_clocks clkb] 

Figure 6: False paths resulting from clock modes. 

If two clocks are muxed in the clock-generation logic, as shown in Figure 6, so that only one 
of the two clocks is propagated to the registers on a design then it is legitimate to specify a 
clock-to-clock false path between them, because the clocks do not both simultaneously 
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propagate to the registers on a design. Setting such a clock-to-clock false path requires 
examining the clock-propagation characteristics across the entire design. If, for example, 
some registers on a design are always driven by a clock clka, and these registers 
communicate with other registers where clka and clkb are muxed, then it would be incorrect 
to set a clock-to-clock false path between clka and clkb. 

False Paths Resulting From Unsensitizable Paths 
set_false_path –from [get_cells start_reg] –to [get_cells end_reg] 

Figure 7: False paths resulting from unsensitizable paths. 

If the combinational logic on the design is structured in a way such that regardless of register 
values or input port values some paths on a design are impossible to sensitize then it is 
legitimate to enter a false path in these situations. For example, in Figure 7, if the nets sel1 
and sel2 are never high in the same clock-cycle then the path shown in red will be 
unsensitizable because its sensitization condition is (sel1 & sel2). In this situation it is 
correct to specify a false path that constrains the unsensitizable paths. Paths that are 
combinationally false (i.e. unsensitizable for all register and input port values) are safe to 
apply even in test mode (for at-speed test) because these paths are false for all states of the 
design – even states that are not reachable during mission mode but are possibly reachable 
during test mode. 

False Paths Resulting From Unreachable States 

set_false_path –from [get_cells start_reg] –to [get_cells end_reg] 

Figure 8: False paths resulting from unreachable states. 
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It is possible for paths to be false because of unreachable design states. For example, the path 
shown in red in Figure 8 is not combinationally false. If you ignore the values on the registers 
that drive sel1 and sel2 the path is sensitizable. However, once you consider how the values 
on these registers is computed sequentially then it is clear that the two registers will never 
take on the same value. As a result, the path shown in red is sequentially false. Focus 
generates 2-cycle multi-cycle paths for paths that are sequentially false. Confirm verifies 
sequential false paths entered by design engineers. 

Types of Multi-Cycle Paths Formally Generated and Verified 
There are two classes of multi-cycle paths that Focus is able to generate and Confirm is able 
to verify: 

1) Multi-cycle paths between cross-clock domains. 

2) Multi-cycle paths between same-clock domains. 

Cross Clock Multi-Cycle Paths 

 
set_multicycle_path –from [get_cells start_reg] \  

                          –to [get_cells end_reg] –start –setup 2 
      set_multicycle_path –from [get_cells start_reg] \ 
          –to [get_cells end_reg] –start –hold 1 

Figure 9: Cross clock multi-cycle paths. 

Cross-clock multi-cycle paths are legitimate when registers clocked by two synchronous 
clocks running at different speeds communicate with each other and, by intent, the design 
provides additional clock cycles for information to propagate from the launch register to the 
capture register. For example, in Figure 9, a register clocked by a 2x clock communicates 
with a register clocked by a 1x clock. Unless the RTL is designed to hold the value on the 
launch register for additional clock cycles, data generated by the fast clock will not be 
captured by the slow clock. However, simply holding the value on the launch clock for more 
than one cycle is also not sufficient for a multi-cycle path between fast and slow clocks. It is 
necessary that the launch register change value in phase P0 only and never in phase P1. 

Both Focus and Confirm formally establish if the design functionality is such that there are 
multi-cycle paths between registers clocked at different speeds (fast clock communicating 
with slow clock, or slow clock communicating with fast clock). Even though design 
functionality may allow for multi-cycle paths with more than two cycles of setup, Focus 
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generates two-cycle multi-cycle paths only and Confirm verifies whether at least two cycles 
of setup are available. 

Same Clock Multi-Cycle Paths 

It is possible to have multi-cycle paths between registers clocked by the same clock. For this 
to happen it must always be the case that when a launch register changes its value, the 
transition is not allowed to propagate to the capture register in the same clock cycle – instead 
the value propagates in a subsequent clock cycle. The design structure that allows same-clock 
multi-cycle paths is shown in Figure 10. 

set_multicycle_path –from [get_cells start_reg] \  
                          –to [get_cells end_reg] –end –setup 2 
      set_multicycle_path –from [get_cells start_reg] \ 
          –to [get_cells end_reg] –end –hold 1 

Figure 10: Same clock multi-cycle paths. 

Focus and Confirm are both able to generate and verify same-clock multi-cycle paths. 

Completeness of Focus 
Focus discovers most of the timing exceptions on a design but not all of them. False paths that 
are not generated by Focus fall into one of two categories: 

1) The false path applies to a timing don’t care. For example, a false path from reset is 
often entered by designers because the reset timing is irrelevant. There is nothing 
functionally false about paths from the reset port on a design; it is just that it isn’t 
necessary for these paths to meet timing. 

2) The false path is from a static register that is software programmed to a constant value. 
As the value on a mode register does not change, engineers often mark as false all 
paths that start at such registers. This, again, is not something that can be functionally 
gleaned from the netlist or RTL. 

Multi-cycle paths are not generated by Focus when an input port is used to control 
propagation along timing paths internal to a block. Focus assumes that an input port will 
assume a new value at each clock cycle. If, in fact, the input port has specific behavior (for 
example, being asserted every other clock cycle) that is the reason for multi-cycle behavior 
within a block, then in the absence of an appropriate clock waveform on the input port, Focus 
will not identify this multi-cycle behavior.  
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Correctness of Confirm 
Confirm uses a separate approach to timing exception verification from that used by Focus to 
generate timing exceptions. The code used by Confirm is separate from Focus. FishTail 
guarantees that if there is an incorrect timing exception in an SDC file then Confirm will 
catch this mistake. Further, to facilitate third-party verification of timing exceptions Confirm 
supports an assertion-based verification methodology in addition to its formal verification 
capability. With this methodology, rather than formally prove the correctness of a timing 
exception Confirm can be asked to generate assertions that describe functional properties that 
must be satisfied for a timing exception to be correct.  These assertions are then imported into 
a functional simulation or property checking tool and verified. Confirm has proven integration 
with all the major functional simulators and property checkers. Confirm can be asked to 
generate assertions in all the major assertion languages (PSL, OVL, OVA, SVA).  

Summary 
FishTail products are mature and have been deployed by leading semiconductor firms to tape-
out chips. Exception generation from Focus reduces the number of timing violations after 
place-and-route by 25-75%, saving weeks in chip-implementation TAT. Exception 
verification from Confirm has routinely caught mistakes made by engineers when they 
entered timing exceptions manually. If you are signing off a chip that has timing exceptions 
entered by engineers you are playing with fire if you allow tapeout to proceed without first 
formally verifying these timing exceptions. It is irrelevant that these exceptions have been 
used on prior tapeouts have you ensured that the exceptions have kept up-to date with design 
changes made since the last tapeout? Finally, Refocus allows you to smoothly manage your 
constraints throughout the entire chip-implementation and signoff flow. 


